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The problem on passive scalar advection in random �statistically homogeneous� self-similar media is solved.
Even in superdiffusive mode the solution is found not to possess “heavy” power tails. Instead, they are
exponential �not Gaussian�. The derivation is conducted by means of the scaling analysis.

DOI: 10.1103/PhysRevE.72.061104 PACS number�s�: 05.40.Fb, 46.65.�g, 47.55.Mh

I. INTRODUCTION

Last time inadequacy of the classical diffusion model to
describe tracer transport in highly disordered media is not
already doubted �1,2�. Fractional diffusion models based on
equations with fractional derivatives belong to the most
promising alternative approaches �see, for example, �3,4��.
These imply two essential consequences. The first one is the
anomalous temporal dependence of the particles plume size
at long times �R� t� with ��1/2�. The second is the possi-
bility of power �instead of Gaussian� decay of concentration
at large �r�R� distances—the “heavy tails.” The same is
implied by various Lévy-flight-based models �5�.

Depending on the form of asymptotic behavior, concen-
tration at large distances from the source can differ by many
orders. Therefore the issue of the actual tail structure may be
extremely important, e.g., for the reliability assessment of
radioactive waste disposal in geological formations.

As far as the standard fractional-diffusion approach is, in
general, formally mathematical and physically insufficiently
justified �6–8�, and since its narrowness is continuously be-
coming better realized �8–14�, the mentioned conclusions
need to be verified on specific physical models. One of them
is a model of random advection with long-range velocity
correlations. Particularly, such a velocity field can describe
fluid flow in a medium with random fractal properties. Pre-
viously the model was investigated in �15,16�, where a num-
ber of fractional diffusion regularities were verified. How-
ever, the results were obtained there within the frame of
simplifying assumptions and the issue of heavy tails remains
open.

In the present paper the random advection model is stud-
ied on the basis of the scaling invariance concept without
any simplifying assumptions. Special attention is paid to the
analysis of asymptotic mode of concentration behavior at
large distances �concentration tails�.

II. PROBLEM FORMULATION

A basis of the random advection model is the equation for
particles concentration c�r , t�:

�c

�t
+ ��vc� = 0. �1�

Here v=v�r� is the advection velocity. The quantity v�r� is a
random function of coordinates �v�r��=0, where�v�r�� is the
average value over an ensemble of realizations �17�. The
velocity field satisfies incompressibility equation div v=0.

We assume that the velocity correlations at large distances
decrease according to power law and the n-point
velocity correlation function defined by the equality
Ki1i2,. . .,in

�n� �r1 ,r2 , . . . ,rn�= �vi1
�r1�vi2

�r2� , . . . ,vin
�rn�� is a uni-

form function of the order −nh at �ri−r j��a �for all pairs of
ri, r j�. Here h�0 and a is a short-range truncation radius.
The medium is also supposed to be statistically homoge-
neous and isotropic. Therefore for the pair correlation func-
tionKij

�2��r1−r2���vi�r1�v j�r2�� we have

Kii
�2��r1 − r2� 	 V2
 a

�r1 − r2��
2h

at �r1 − r2� � a , �2�

where V2 is the characteristic value of Kij
�2��r� at �r��a.

III. MACROSCOPIC TRANSPORT EQUATION

Tracer concentration averaged over an ensemble of me-
dium realizations, c̄�r , t���c�r , t��, satisfies the standard
macroscopic equation expressing the property of particle
number conservation:

�c̄

�t
+ div q = 0. �3�

Here, q�r , t� is the macroscopic flux density that meets an
obvious requirement—to be zero in case of uniform concen-
tration distribution. With taking causality principle and lin-
earity of the problem into account, we have

qi�r,t� = − �
−�

t

dt�� dr�f ij�r�,t��
�c̄�r − r�,t − t��

�rj
. �4�

The response tensor function f ij�r , t� is determined by the
advection velocity distribution and obeys the property of a
positive definiteness:

f ij�r,t�sisj � 0, �5�

where s is an arbitrary vector. Equation �5� follows from
principle of entropy increase.*Email address: kondrat@ibrae.ac.ru
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For certainty, we consider the initial-condition problem,
c̄�r ,0�=c�0��r�, with no source. Then the average concentra-
tion c̄�r , t� and the quantity c�0��r�� are connected by the
relation

c̄�r,t� =� dr�G�r − r�,t�c�0��r�� . �6�

The Fourier-Laplace transform of Green’s function G�r , t�
according to Eqs. �3� and �4� is

Gkp = �p − M�k,p��−1, �7�

where

M�k,p� = − kikj�
0

�

dte−pt� d3re−ikrf ij�r,t� . �8�

Hereafter k��k�, r��r�.

IV. SCALING ANALYSIS

Within the model under consideration �see Eq. �2�� there
is no space scale to characterize the system behavior at r
�a. This allows us to take advantage of the ideas of critical
phenomena theory �18� and consider transport processes at
distances r�a to be scale-invariant. In other words, we shall
consider the macroscopic transport equation to be invariant
with respect to the transformation

r → sr , �9�

with all the quantities of Eqs. �3� and �4� transforming as

A → s−�AA , �10�

where the exponent �A is termed as scaling dimension of the
quantity A.

The scaling dimensions of the velocity, concentration, and
Green’s function follow from Eq. �2� and the property of
particle number conservation:

�v = h, �c = �G = 3. �11�

Equations �3� and �4� make it possible to establish a rela-
tion between the time and the flux density scaling dimen-
sions:

�t = 2 − �q. �12�

With Eqs. �11� and �12� taken into account, the identity q
= ��vc�� results in the expressions:

�q = h + 3, �13�

�t = − �1 + h� . �14�

Using Eqs. �4�, �13�, and �14� one can also easily obtain

� f = 2h + 3. �15�

Note that the results of this section are correct only in the
case when transport properties are determined by a long-
range part of velocity correlations �see below�.

V. CONCENTRATION BEHAVIOR

Scaling analysis gives good grounds to determine the con-
centration behavior. According to the results of the previous
section the response function f ij�r , t� may be represented in
the form

f ij�r,t� =
�Vah�2

r2h+3 	ij�n,
�, n =
r

r
, �16�


 =
r

�ahVt�1/�1+h� at r � a;

f ij�r,t� 
V2

a3 at r � a . �17�

Here	ij�n ,
� is a dimensionless tensor function.
Now we address the properties of the Green’s function

�and, therefore, of concentration behavior� depending on the
value of h. Consider cases h�1, h�1, and h=1 separately.

A. h�1

From Eqs. �16� and �17� we see that the main area to
contribute the integral over r and t in Eq. �8� corresponds to
r�a, t�a /V. As soon as we are interested in large-scale
concentration distribution �r�a, t�a /V�, we may put
exp�−ikr− pt�	1 in the integrand of Eq. �8�. Thus we arrive
at

M = − Dk2, D  Va . �18�

Substituting this into Eq. �7� we get Gkp= �p+Dk2�−1, which
is the Fourier-Laplace transform of Green’s function for the
equation �c̄ /�t=D�c̄. Therefore the tracer transport corre-
sponds to the classical diffusion regime when h�1.

Note that classical scaling �t=−2 differs from the one
given by Eq. �14�. This is caused by the fact that tracer
transport at h�1 is determined by short-range velocity dis-
tribution where the scale invariance does not take place.

B. h�1

As seen from Eqs. �16� and �17�, contribution of large
distances �r�a� into the integral of Eq. �8� is predominant
over that of small ones �r�a� in this case. Substituting a
long-range expression �16� into Eq. �8� we have:

M�k,p� = − kikj�
0

�

dte−pt� d3re−ikr �Vah�2

r2h+3 	ij�n,
� .

�19�

From here an important relation follows for the mass opera-
tor:

M�k,p� = − p���,  = k2
 p

Vah�−2/�1+h�

. �20�

Making use of this expression we can represent the Green’s
function
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G�r,t� = �
b−i�

b+i� dp

2�i
� d3k

�2��3

eikr+pt

p − M�k,p�
, Re b � 0

�21�

�see Eq. �7�� in the form:

G�r,t� = �ahVt�−3/�1+h�g�
� �22�

with g�0��0,� and g�
�→0 as 
→�. We conclude from
Eq. �22� that the particles plume size at long times has
anomalous temporal dependence

R�t�  �ahVt�1/�1+h� at h � 1, �23�

which corresponds to superdiffusion transport mode. This
conclusion coincides with the result of �15,16�.

Let us now turn to the Green function’s �and, therefore,
concentration’s� behavior at asymptotically large distances,

�1, when r�R�t�. Performing integration over the angles
in Eq. �21� and taking into account the property M�−k , p�
=M�k , p� we get an expression

G�r,t� =
1

r
�

b−i�

b+i� dp

2�i
�

−�

� kdk

�2��2i

eikr+pt

p − M�k,p�
. �24�

To derive a long-distance asymptotic of G function we need
to know the analytical properties of integrand in Eq. �24�. As
will be seen below, the main contribution into the integral of
Eq. �24� at 
�1 is given by the area �Im p��Re p, Re p
�0. So, analyzing the analytical properties we will accept
Im p=0, p�0. Consider the behavior of the mass operator
M�k , p� in the two limiting cases: p�0,k→0 and k�0, p
=0.

When p�0, the convergence of the integral on t in Eq.
�19� is ensured by the multiplier e−pt. The dependence of
M�k , p� on the k variable in this case is determined by a
decaying regime of the functionf ij�r , t� at r→�. One can
easily see thatf ij�r , t� decreases faster than any negative-
exponent power in this limit. Indeed, the very fact of the
existence of arbitrarily high-order velocity correlation func-
tion in our problem means that the velocity distribution is
determined by a functional that decreases at great velocity
magnitudes very steeply. So, in essence, the velocity advec-
tion field is virtually limited in magnitude. In turn, this
means that the functionf ij�r , t� decays at r→� so fast that all
its power moments on coordinate exist. Therefore the point
k=0, p�0 is regular for the function M�k , p� and we may
write the following expression for the mass operator at p
�0, ���1:

M�k,p� = − p�
n=0

�

ann,  = k2
 p

Vah�−2/�1+h�

. �25�

In the second limiting case, when k�0, p=0 and Im k
=0, we have from Eq. �19�

M�k,0� 	 − AVahk1+h, �26�

where the constant A�0 due to Eq. �5�.

The established properties of the mass operator allow us
to consider M�k , p� as a real, positive, and analytical function
when k and p are real and finite. This means that the inte-
grand in Eq. �24� has no singularity at the real axis of k and
so a long-range asymptotic of the G function is not power-
like. Therefore there are no heavy �powerlike� concentration
tails in the random advection model.

It follows from Eq. �24� that at real p the nearest to the
real axis of k singularities of the M�k , p� function resides on
the imaginary k axis. According to Eqs. �19�, �20�, and �26�
these singularities correspond to branch points at k= ± i�b, in
the vicinity of which the mass operator approximately equals

M�k,p� 	 − BVah k2

p�1−h�/�1+h� � − b�−�1−h�,

b = − �b
2
 p

Vah�−2/�1+h�

� 0, B � 0. �27�

According to Eq. �19�, the function M�k , p� at the imagi-
nary axis interval �−i�b , i�b� is real and positive when Im p
=0. At the same time, as seen from Eq. �27�, it tends to
infinity at k→ ± i�b. Therefore we come to the conclusion
that the nearest to the real axis of k singularities of the inte-
grand in Eq. �24� at Im p=0 are the two poles k= ± i�0 with
0��0��b. According to Eq. �20� the quantity �0��0�p� is
determined by the equation

��0� + 1 = 0, �0�p� = 
 p

Vah�1/�1+h�
��0�, 0 � 0.

�28�

Now, bearing in mind the limit 
�1 �r�R�t�� for the G
function, after shifting upwards the integration contour on
the k variable in Eq. �24� we come to the expression

G�r,t� 	
1

4�ir���0��b−i�

b+i� dp

2�ip

 p

Vah�2/�1+h�

�exp�− ��p;r,t�� , �29�

where

��p;r,t� = �0�p�r − pt . �30�

An important area of p in the integral of Eq. �29� at 

�1 corresponds to inequality ����1. This allows us to use
the saddle-point technique to perform integration on p. As a
result, we come to the final asymptotic expression for the
Green’s function in the long-distance limit:

G�r,t� 	
C

�4��3/2 �Vaht�−3/�1+h��3�1−h�/2h exp�− h��1+h�/h� .

�31�

Here we use the following notations:

� =
��0�
1 + h


 �
��0�
1 + h

r

�ahVt�1/�1+h� , �32�
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C =
1

���0�
� 2�0�

h�1 + h�
 1. �33�

Therefore, according to Eq. �31�, the concentration tail in
random advection model at h�1 is of exponential kind �19�.

Note that the saddle-point value of p �determined by
���p ;r , t� /�p=0� is real and positive; an effective range of
integration in Eq. �29� corresponds to an inequality

�Im p�
�p�

� 
−�1+h�/2h � 1, �34�

justifying the neglect of the imaginary part of p during the
analysis of the analytical structure of the mass operator.

C. h=1

An attempt to consider this case as a limit h→1 from
above using the response function representation of Eq. �16�
meets a logarithmic divergence in Eq. �4�. Hence we con-
clude that, in fact, the classical scaling 
r /�Dt with D
Va is modified by a weak coordinate dependence of a
logarithmic kind:


 = r/�D�r�t . �35�

This means that when R�t��R�0� at distances r�R�t� the
relation between the flux density q�r , t� and concentration
should effectively have the form:

q�r,t� = − D�r� � c̄�r,t� �36�

with r counted from the center of initial concentration distri-
bution. Substituting Eq. �35� into Eq. �16� and then the latter
into Eq. �4� we get

dD�r�
dr


�Va�2

rD�r�
. �37�

Here from it follows

D�r� = D̃ ln1/2
 r

a
�, D̃  Va . �38�

Substituting this relation into Eq. �35� we obtain an estimate
for the particles plume size at long times:

R�t�  �D̃t ln1/4
�D̃t

a
� at h = 1. �39�

Turning to the long-distance concentration asymptotic we
substitute Eqs. �35� and �38� into Eq. �19� to calculate the

mass operator at the real axis of k with Im p=0, p�0. This
gives the relation

M�k,p� 	 − D̃k2 ln1/2 �, � = min��ka�−1,� D̃

a2p
� .

�40�

Proceeding further as in the case h�1 we find that the
nearest to the real axis of k singularities of the integrand in
Eq. �24� are the two poles k= ± i�0 with �0

	�p / D̃ ln−1/4��D̃ /a2p�, which result in the following long-
distance asymptotic for the G function at 
�1:

G�r,t� 	
1

�4�D̃t ln1/2�D̃t/ar��3/2
exp�−

r2

4D̃t ln1/2�D̃t/ar�
� .

�41�

Therefore, a logarithmically modified Gaussian concen-
tration tail takes place in the case h=1.

VI. CONCLUSION

In summary, a transport of passive scalar in a static ran-
dom advection field with power-law velocity correlations
was studied in the frame of scaling analysis. We found that
depending on the steepness of correlations decay �character-
ized by the index h� various qualitatively different regimes of
transport take place. When the decay is fast �h�1�, the
transport is determined by “short jumps” and a classical dif-
fusion regime is realized. When h�1, the advective trans-
port is correlated at large distances, and its main mechanism
corresponds to Lévy walks leading to a superdiffusion re-
gime. At h=1, logarithmic corrections to classical-diffusion
regularities appear.

The main conclusion drawn up from the study concerns
the concentration behavior at large distances �at the “tails”�.
It was shown that the concentration decay in the superdiffu-
sion regime is of contracted exponential type and is even
faster than the Gaussian one in classical diffusion. This is in
contrast with space-fractional diffusion models where the
tails are of power type.
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